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We consider a liquid interface with different principal curvatures ±c and find that the mere presence of a
spherical particle leads to a deformation field of quadrupolar symmetry; the corresponding “capillary quadru-
pole moment” is given by the ratio of the particle size and the curvature radius. The resulting pair interaction
of nearby particles is anisotropic and favors the formation of aggregates of cubic symmetry. Since the single-
particle trapping energy depends quadratically on curvature with a negative prefactor, a curvature gradient
induces a lateral force that pushes the particles towards strongly curved regions of the interface. As an
illustration we discuss the effects occuring on a catenoid.

DOI: 10.1103/PhysRevE.74.041402 PACS number�s�: 82.70.Dd, 68.03.Cd

I. INTRODUCTION

Capillary interactions arise from the deformation of a liq-
uid phase boundary due to the presence of colloidal particles.
They influence the phase behavior of two-dimensional �2D�
colloids �1� and are relevant for technological applications
such as nanostructuring of surfaces �2–4�. In the visible
range, the balance of gravity and interface tension gives rise
to a variety of phenomena, as a simple example we note the
aggregation of cereals on a bowl of milk. Tension, weight,
and hydrodynamics concur in the locomotion of water walk-
ing insects and in the meniscus climbing of the larvae of the
waterlily leaf beetle �5,6�. For small particles in the micron
or nanometer range, gravity is negligible and often sup-
planted by charge effects. It has been known for a while that
two-dimensional colloidal crystals of ionized particles are
stabilized by electrostatic repulsion �1,7�. More recently, the
experimental observation of an attractive force �8� has stimu-
lated a detailed study of the charge-induced electric stress on
the interface �9–12�; indeed, like charges trapped on micron-
sized water droplets are subject to an attractive capillary po-
tential that depends on the mean curvature of the liquid in-
terface �13�.

An external force F on a spherical particle floating on an
interface of tension �, induces an isotropic deformation field
that varies logarithmically with the distance, �
= �F /2���ln r �14�. On the other hand, the mere presence of
a nonspherical particle may give rise to an anisotropic inter-
face deformation; like in bulk elasticity, the dipolar term van-
ishes, and in most cases the leading-order deformation is
given by the known quadrupolar field in two dimensions, �
�cos�2��r−2 �15–18�; its prefactor is proportional to the
capillary quadrupole moment carried by the particle. The re-
sulting pair potential is anisotropic and favors the formation
of clusters with strong orientational order. In recent years,
several experimental studies have confirmed the relevance of
capillary quadrupole interactions �15,19�.

In the examples mentioned so far, capillary phenomena
arise from the properties of the trapped particles, such as
weight, charge, or shape. In other words, a spherical mass-
less and uncharged particle would not affect the interface. In
the present paper, we discuss an exception to this rule: We
show that spherical particles at an interface with two differ-

ent principal curvatures interact as if they carried a capillary
quadrupole; the value of the effective quadrupole moment is
given by the ratio of the particle size and the curvature radius
of the interface. After a general formulation of the problem
we perform a perturbative expansion in terms of the small-
gradient approximation and determine the minimal surface
by varying the deformation field at fixed boundary condi-
tions. The expression for the change of interface area pro-
vides the trapping potential of a single particle and the effec-
tive pair interaction. As an example, we study the lateral
forces on micron sized particles on a catenoid interface, and
finally discuss related problems occuring for a two-phase
flow in a microchannel and for the meniscus climbing of
water treading insects.

II. THE INTERFACE AREA

Consider a particle trapped at a liquid interface. The total
interface energy E=�SL+�1P1+�2P2 depends on the tension
of the fluid phase boundary �, those of the particle surface in
the two liquids, �1 and �2, and on the corresponding areas
SL, P1, P2. The global constraint of minimum energy readily
leads to two local constraints, one on the liquid interface and
one on the intersection of the three surfaces: In the absence
of external forces, the fluid phase boundary satisfies
Laplace’s equation, whereas the contact angle at the particle
surface is given by Young’s relation

cos �0 =
�1 − �2

�
. �1�

�For ��1−�2 � �� the particle does not stay at the interface
but is soluted in one of the fluid phases.� These conditions do
not depend explicitly on the solid-liquid surface areas P1 and
P2; yet they do in an implicit manner, since the contact line,
which constitutes the boundary of P1 and P2, is determined
by Young’s angle.

We briefly discuss the simple case of a spherical particle
of radius r0 at a flat liquid interface. Because of the axial
symmetry of the problem, the two constraints given above
are independent of each other. The flat interface is still the
relevant solution of Laplace’s equation, and Young’s angle is
satisfied by adjusting the vertical position of the particle.
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Moreover, this angle describes the position of the contact
line with respect to the particle center; and the contact line is
given by a circle of radius

a0 = r0 sin �0.

The presence of the particle reduces the interface area by a
disk of area �a0

2, corresponding to the trapping energy ��a0
2.

In this work we consider a more complicated situation
that arises at a curved liquid interface. The trapped particles
reduce the interface area and thus lower its energy. Because
of the finite curvature, their presence also modifies the inter-
face profile and thus renders the evaluation of the area sig-
nificantly more difficult. From Fig. 1 it is clear that the in-
homogeneous curvature tensor breaks the axial symmetry. As
a consequence, the constraints at the liquid interface and the
contact line are no longer independent of each other; indeed,
Young’s relation �1� leads to a nonuniform boundary condi-
tion for the interface profile which, in turn, results in an
interface deformation.

In mathematical terms, the problem consists in minimiz-
ing the liquid interface area with the constraint on the contact
angle along the two-phase line at the particle surface. The
area SL of the fluid phase boundary with N particles is given
by the integral

� �
I

dudv�g ,

which is parametrized by two real variables u and v. The
determinant of the metric tensor,

g = det gij, gij = �iR · � jR ,

is defined in terms of the derivatives of the position vector
R�u ,v�. It turns out convenient to substract from SL the area
S0 of the unperturbed interface without particles, and to con-
sider their difference S=SL−S0. Starting from the known pa-
rametrization R0�u ,v� of the interface in the absence of col-
loidal particles, and denoting the corresponding determinant
g0, the change of area reads

S =� �
I

dudv�g −� �
I+P

dudv�g0. �2�

Here P and I denote the range of the parameters u ,v occu-
pied by the particles and the liquid interface, respectively,
and I+P accounts for the interface in the absence of par-

ticles. Each particle corresponds to a hole in the interface,
which is bounded by the contact line �S. Note that S is al-
ways negative; for a flat interface one has g=1=g0, and N
particles reduce the area by S=−N�a0

2.
Evaluation of Eq. �2� requires us to characterize the

boundary �S and to determine the interface deformation that
satisfies the condition of mechanical equilibrium. Figure 1
shows the intersection of a spherical particle and a surface of
zero mean curvature. One easily realizes that the contact line
is not a circle but a curve in three-dimensional �3D� space,
and that the unperturbed interface does not satisfy Eq. �1�.
Yet Young’s relation expresses the condition of mechanical
equilibrium that must be satisfied at the contact line and thus
requires a deformation of the interface in the vicinity of the
particles. This constraint is implemented through the scalar
product of the normal vector of the particle surface nP and
that of the interface nI. In terms of the function

F�r� = nP · nI − cos �0, �3�

mechanical equilibrium corresponds to F�r�=0 along the
contact line. Formally, this is achieved by adding to the in-
terface area a line integral,

S + 	
�S

ds��r�F�r� , �4�

where the function ��r� plays the role of a generalized
Lagrange multiplier. The interface profile is determined by
minimizing S and requiring that the functional derivatives
with respect to ��r� vanish.

III. PERTURBATION THEORY

A. The area functional

The above expression for the area takes a simple form in
the Monge gauge, where u and v are Euclidean coordinates
that define the plane A tangent to the surface in a given point,
and where w�u ,v� is the height of the surface with respect to
the plane A. One readily finds the determinant of the metric
tensor g=1+ ��w�2.

Since capillary deformations induced by colloidal par-
ticles are weak in general, we resort to the small-gradient
approximation

��w� � 1, �5�

where the 2D gradient operator � is defined with respect to
the plane A. �This inequality is valid at distances smaller than
curvature radii.� Thus the interface area may be approxi-
mated by the first terms of a series in powers of the defor-
mation field w and its derivatives. The determinant reads to
quadratic order

�g = 1 + 1
2 ��w�2 + ¯ . �6�

It turns out convenient to write the deformation field as

w = w0 + � , �7�

where w0 describes the unperturbed surface with the deter-
minant

FIG. 1. Contact line of a spherical particle at a curved interface.
The axes define the local coordinates u ,v ,w.
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�g0 = 1 +
1

2
��w0�2 + ¯ ,

and where � accounts for the deformation due the presence
of the colloidal particles.

When regrouping the integrals over the interface domain
I, the area change due to the presence of colloidal particles
takes the form

S = �
I

dA��g − �g0� − �
P

dA�g0.

The second term represents the area occupied by the particle,
whereas the first one accounts for the deformation-induced
area difference on the domain I. Inserting the truncated se-
ries for g and g0, the latter becomes 1

2 
dA���w�2− ��w0�2�;
its sign clearly depends on the ratio of the gradients of the
deformed and unperturbed surfaces. Using w=w0+�, we thus
obtain the functional

S��� =
1

2
�

I
dA�����2 + 2�� · �w0� − �

P
dA�1 +

1

2
��w0�2� .

�8�

We still must specify the contact line �S and the constraint
F�r� in terms of the deformation field w, and to give the
explicit form of w0.

B. The contact line

In local coordinates, the contact line is determined by the
radial variable a and the height function w evaluated at the
particle surface, w̃=w��S. For further use, we express a as a
function of w̃ and give its power series truncated at second
order. From Fig. 2, one readily finds the cosine and the sine
of the polar angle � in terms of w̃ and a,

cos � = cos �0 +
w̃

r0
, sin � =

a�w̃�
r0

. �9�

Rewriting a�w̃�=r0
�1−cos2 � as a function of the small pa-

rameter

w̃/a0 � 1,

and expanding to quadratic order, one has

a�w̃� = a0 − w̃ cot �0 −
1

2

w̃2

a0
�cot2 �0 + 1� + ¯ . �10�

The vertical and radial coordinates of the contact line, w̃ and
a, are parametrized by the azimutal angle �; a schematic
view of a�w̃���� is given in Fig. 3.

C. Boundary condition

Equation �3� gives the contact angle in terms of the vec-
tors normal on the particle surface and the liquid interface.
Choosing polar coordinates r ,� in the u-v plane and defining
the corresponding local basis er, e�, ew, the normal vectors
read

nP = sin �er + cos �ew, nI = �ew − �w̃�/�g .

With the scalar product nP ·nI and the geometric relations
�29� we obtain

F�r� =
1

r0
�g

�w̃ − a�w̃�er · �w̃ + �1 − �g�r0 cos �0� .

Since both a and g depend on w̃, this expression is a nonlin-
ear function of w̃. The linear approximation is achieved by
inserting the expansions �6� and �10�, and by retaining the
leading terms only,

FIG. 2. Schematic view of a particle of radius r0 at a liquid
interface. �0 and a0 are the contact angle and the radius of the
contact line for a flat interface. w0 describes a curved interface
without particle, w=w0+� accounts for the deformation due to the
particle. � is the polar angle of the deformed contact line, and a its
radial position.

FIG. 3. The contact line of a spherical particle on a deformed
surface is given by the vertical position w̃ and the radial coordinate
a�w̃�. On a flat interface, the contact line forms a circle of radius a0

in the u-v plane.
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F�r� =
w̃�a0,��

a0
− er · �w̃�r,���r=a0

. �11�

Note that this relation applies to the deformation field along
the contact line.

D. The unperturbed surface

Since the quantities w0 and � defined in �7� turn out to be
of the same order of magnitude, it is justified to treat them on
an equal footing and to expand w0 in terms of the small
gradient approximation �5�. Any minimal surface has zero
mean curvature; as a consequence, the equation of the unde-
formed surface satisfies �2w0=0 and can be cast in the form

w0�r� = 1
2c�u2 − v2� + ¯ ,

where the principal curvatures at the origin are given by ±c.
For later use we rewrite this expression in polar coordinates,
r=�u2+v2 and �=arctan�v /u�, and thus have

w0�r� = 1
2cr2 cos�2�� . �12�

The condition ��w0 � �1 restricts the validity of the expan-
sion for w0�r� to distances r within the curvature radius,
r�1/c. �We have supposed that the principal curvatures do
not vary significantly in this range.�

IV. VARIATIONAL PRINCIPLE

The change of area �8� comprises two terms S=SI+SP,
that involve integrals over the parameter domains I and P
occupied by the liquid interface and the particles, respec-
tively. Here we derive explicit expressions in terms of the
deformation field at the contact line.

Integrating the first term in �8� by parts, we find

SI = 	
�S

ds�1

2
�� + �w0�� −

1

2
� dA��2� .

Since the integrand is already of second order in the small
quantities � and w0, we replace the oriented line element
along the surface boundary �S by the leading term ds
=−era0d�, and thus have

SI = − a0�
0

2�

d��1

2
�r� + �rw0�� −

1

2
� dA��2� . �13�

The second contribution SP represents the area occupied
by the particle; it is defined with respect to the unperturbed
interface and bounded by the contact line �S. At a flat inter-
face it reads −�a0

2; we are mainly interested in the small
changes that arise from the finite curvature of w0 and from
the noncircular shape of the contact line. We evaluate SP for
a single particle located at the origin. In polar coordinates we
have dA=d�drr and ��w0�2=c2r2, and the radial integral is
readily performed,

SP = − �
0

2�

d��1

2
a�w̃�2 +

1

8
c2a�w̃�4� .

Inserting �10�, expanding to quadratic order in the small pa-
rameters ca0 and w̃ /a0, integrating the terms that involve w0
only, and using 
d�w0=0, we find

SP = − �a0
2�1 +

1

8
c2a0

2� + �
0

2�

d���a0 cot �0 + �w0 +
�2

2
� .

�14�

Equations �13� and �14� show the functional dependence
of the area on the interface profile �, where the actual defor-
mation is to be determined by minimizing the surface area.
Since SP and the first term in SI involve the deformation at
the contact line and thus are fixed by the boundary condition
�11�, the variation with respect to � reduces to

0 =
�S

��
= − �2� , �15�

which is the well-known condition for a minimal surface.
The boundary condition is formally imposed by the func-

tional derivative �S /��=0, which implies F�r�=0 every-
where along the contact line. Inserting the form �12� and the
relation dw0 /dr=2w0 /r in �11�, we obtain the linear inhomo-
geneous differential equation

a0
d��r,��
dr



r=a0

= ��a0,�� − w0�a0,�� . �16�

Together with the condition that � vanishes at large distances,
Eqs. �15� and �16� entirely determine the deformation field;

their solution is denoted �̂�r�. Since the boundary condition
�16� is a linear equation and since the integral of the inho-
mogeneity vanishes, 
d�w0=0, a similar relation holds for
its solution, and the corresponding integral in �14� vanishes,


d��̂a0 cot �0=0.
The surface integral in �13� is zero because of �2�=0.

Replacing the derivatives in the line integral with �16� and

dw0 /dr=2w0 /r, the integrand simplifies to 1
2 �̂2+ 3

2 �̂w0; taking

the sum S=SI+SP, the terms in �̂2 cancel, and we obtain the
total change of area

S1��̂� = − �a0
2�1 +

1

8
c2a0

2� −
1

2
�

0

2�

d��̂w0.

The constant represents the area that the particle occupies on
the unperturbed interface, whereas the integral term accounts
for the additional reduction due to the relaxation of the in-
terface profile.

This result has been obtained for a single particle at the
origin. The formal generalization is straightforward,

SN = − N�a0
2�1 +

1

8
c2a0

2� −
1

2�
i=1

N �
0

2�

d�i�̂iw0, �17�

with a set of local coordinates for each of the N particles.

Here �̂i represents the total deformation field evaluated at the
contact line of particle i; since it comprises contributions
from all particles, care must be taken when evaluating the
boundary condition �16�. In the remainder of this paper, we

determine the deformation field �̂ for the particular cases N
=1,2, and we derive both the trapping energy of a single
particle and the pair interaction of two nearby particles.

ALOIS WÜRGER PHYSICAL REVIEW E 74, 041402 �2006�

041402-4



V. SINGLE-PARTICLE CASE

We consider the deformation field induced by a single
particle. The solution of the Young-Laplace equation �2�
=0 reads in polar coordinates r ,�,

��r� = �0 ln r + �
n=1

	

�n�a0

r
�n

cos�n� − �n� , �18�

where the coefficients �m and the phases �m are to be deter-
mined from the boundary condition and the requirement that
the deformation vanishes at large distances.

Inserting the above series for � and the explicit form of
the inhomogeneity �12� in the differential equation �16�, one
readily finds that n=2 is the only finite term. The solution
reads

�̂�r� = 
1f�r� �19�

with the shape function

f�r� = �a0

r
�2

cos�2�� �20�

and the amplitude


1 =
ca0

2

6
. �21�

This approximate expression is valid in the range cr�1, i.e.,
at distances shorter than the curvature radius 1/c. We remark
that at the contact line, the unperturbed profile w0 and the

deformation �̂ differ by a factor 3 and thus are of the same
order of magnitude.

The last term in Eq. �17� is readily integrated, and one
finds for the area reduction due to the deformation field,

−
1

2
�

0

2�

d��̂w0 = −
�

4

1ca0

2,

resulting in the total change of area

S1 = − �a0
2�1 +

c2a0
2

8
+


1c

4
� .

A colloidal particle at a flat interface reduces the area by
�a0

2; at a curved interface described by w0 augments this
quantity by a fraction 1

8c2a0
2, whereas the interface deforma-

tion � enhances this effect by 1
4
1c. Inserting the above re-

lation for 
1 we obtain the total change of area,

S1 = − �a0
2�1 + 1

6c2a0
2� . �22�

The curvature-induced enhancement is proportional to the
square of the aspect ratio ca0 of the contact line and curva-
ture radii.

The reduction of the undeformed interface area by a fac-
tor 1

8c2a0
2 may be understood by noting that the area inside of

a circle is always smaller than the area inside of a three-
dimensional curve, obtained by distorting that circle on the
sphere while keeping its center fixed. The second term in S1,
of relative magnitude 1

4
1c, arises from the relaxation of the
liquid phase boundary and thus has no such simple explana-

tion. Our calculation shows that both contributions diminish
the interface area and are of the same order of magnitude.

VI. TWO-PARTICLE CASE

Now we turn to the case where a second particle is found
at the position �=��cos �0 , sin �0�†. We evaluate the induced
pair interaction for the case where the distance � is larger
than the contact line radius a0 but smaller than the curvature
radius,

a0 � � � 1/c .

The first inequality justifies to retain only the term of leading
order in a0 /�, whereas the second one implies that the prin-
cipal curvatures at the positions of the two particles differ
very little and may be taken to be identical.

A. Deformation field

If the prinicpal axes do not change over the distance �, the
deformation fields of the particles are described by the same
function f , and the solution of �2�=0 is a superposition

�̂�r� = 
2�f�r� + f�r − ��� . �23�

The contribution of the particle at r=0 reads

f�r� = �a0

r
�2

cos�2� − �� ,

where the phase � accounts for the coupling of the deforma-
tion field to the orientational angle �0. The field f�r−�� is
due to the particle at position �. Since we are interested in its
values close to the origin r��, we expand in powers of r /�
and truncate at quadratic order. This is done most simply
after writing the field in Cartesian coordinates, f�R�=a0

2�X2

−Y2� / �X2+Y2�2, and we find

f�r − �� = f0 +
3a0

2

�4 r2 cos�2� − 4�0 + 2�� , �24�

where f0 contains a constant and a term proportional to
�ra0

2 /�3�cos��−3�0�. The constant would merely shift the
origin of the vertical axis, whereas the remaining term van-
ishes when inserting �23� in �17�; thus we discard f0.

B. Superposition approximation

A widely used approximation consists of taking �̂�r� as
the sum of two single-particle deformations, i.e., setting 
2
=
1 and �=0 in the above expression. Integrating the over-
lap term along the contact line r=a0,


1

2
�

0

2�

d�f�r − ��w0�r� =
3

4
�
1ca2a0

4

�4 cos�4�0� ,

the interface area �17� is readily evaluated and reads

S2 = 2S1 −
9

2
�
1

2a0
4

�4 cos�4�0� . �25�

In terms of the interface energy E=�S, this expression con-
stitutes a pair interaction that depends both on the distance �
and the orientation �0.
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C. Boundary condition

The superposition approximation is justified if the defor-
mation field arises from an external force acting on the par-
ticles. In the present case, however, the deformation origi-
nates from the boundary condition imposed in terms of the
contact angle. As a consequence, the prefactor 
 is not the
same for one and two particles. Here we solve the boundary
conditions for the total deformation field of two particles that
is given by �23� and �24�.

In order to determine 
2 and �, we insert �̂�r� in Eq. �16�
and evaluate �̂r at the contact line of the particle at the origin,
i.e., at r=a0. The first term in �23� gives

�a0�r − 1�f�r� = − 3 cos�2� − �� ,

whereas the second one leads to

�a0�r − 1�f�r − �� = 3�a0/��4 cos�2� − 4�0 + 2�� .

After decomposing the cosine and inserting w0�r�, we obtain
for Eq. �16� the form cos�2��Q−sin�2��P=0 which is valid
for all �. The resulting equation Q=0 reads explicitly

1

2
ca0

2 − 3
2�cos � −
a0

4

�4 cos�4�0 − 2��� = 0,

whereas P=0 gives

sin � − �a0/��4 sin�4�0 − 2�� = 0.

To leading order in the small parameter a0 /�, one finds the
phase �= �a0 /��4 sin�4�0�. Inserting this phase in �23� and
integrating �17�, one finds corrections of the order �2

��a0 /��8 which are negligible at distances � larger than the
particle size.

Setting �=0 in the relation for 
2 one finds the prefactor
of the deformation field


2 =
ca0

2

6

1

1 − �
=


1

1 − �
�26�

with the shorthand notation

� = �a0/��4 cos�4�0� .

The quantity 
2 is maximum for particles aligned on one of
the principal curvature axes. In the limit a0 /�→0, we re-
cover the deformation amplitude �22� of a single particle.

D. Area reduction

Inserting �23� and �26� in Eq. �17�, one readily obtains the
change of area in the presence of two particles

S2 = − 2�a0
2�1 +

c2a0
2

8
+


2c

4
� .

Evaluating the corrections with respect to the single-particle
expression S1, we find in leading order in the small param-
eter �,

S2 − 2S1 = −
�

2

1ca0

2� = − 3�
1
2� . �27�

This is by a factor 2
3 smaller than the result �25� from the

superposition approximation.
These results are readily generalized to the case of N par-

ticles. Solving the boundary condition for the superposition
of N one-particle deformation fields, we obtain the change of
interface area

SN = NS1 − 3�
1
2�

�i,j�
�ij .

Here the correction factor �ij depends on the distance and
relative orientation of particles i , j, and the sum runs over all
pairs.

VII. DISCUSSION

The presence of the colloidal particles reduces the area of
the liquid interface by S and thus diminishes the energy by
the amount

E = �S .

As discussed below Eq. �1� this expression does not depend
explicitly on the particle-fluid interface areas P1 and P2,
since their effect has been absorbed in the constraint of
Young’s law. More precisely we have discarded a constant
term 1

2 ��1+�2��P1+ P2�= ��1+�2�2�r0
2, which does not de-

pend on the contact line and thus is irrelevant for our pur-
pose.

We first discuss the energy gain due to a single particle,
and then consider the deformation-induced effective pair in-
teraction of nearby particles.

A. Single-particle energy

From the single-particle area �22� one readily obtains the
energy gain

E1 = �S1 = − ��a0
2�1 +

c2a0
2

6
� . �28�

The leading term of the trapping energy reads E0=−��a0
2.

For a micron size particle �a0=1 
m� at an interface with a
tension �=100 mJ/m2, it is of the order of E0�10−13 J,
which is about 108 times the thermal energy kBT at room
temperature.

Here we are mainly interested in the contribution that de-
pends on curvature,

E1 − E0 = −
�

6
�c2a0

4.

At an interface with curvature radius 1/c�100 
m, this en-
ergy difference takes a value of about 4�10−18 J, which is
by three orders of magnitude larger than the thermal energy
at room temperature, E1−E0�103kBT. Two conclusions may
be drawn from this estimate. First, in the case of a nonuni-
form curvature c�r�, the energy E1−E0 varies with position
and constitutes an effective potential that takes its minimum
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value where the curvature is maximum; this potential pro-
vides a lateral force,

F�r� = − �E1�r� =
�

3
�a0

4c�c ,

that pushes the floating particle towards regions of maximum
curvature. With the above parameter values one finds F
�10−14 N. Second, the deformation energy, i.e., the term

arising from the profile �̂, is of the order of the curvature-
dependent term, E1−E0, and thus exceeds by far the thermal

energy; we conclude that the deformation field �̂�r� is hardly
affected by thermal fluctuations.

Regarding the validity of the small-gradient approxima-
tion, leading-order corrections are of the order O��ca0�4� and
thus by a factor c2a0

2�10−4 smaller than the above results.

B. Pair interaction

Two nearby particles interact through the interface in-
duced potential energy U=��S2−2S1�. With �27� one finds
the expression

U��,�0� = −
�

12
�

c2a0
8

�4 cos�4�0� , �29�

that depends both on the distance � and the relative orienta-
tion �0 with respect to the principal curvature axes. For-
mally, the expansion in powers of a0 /� breaks down if the
two particles are at contact, �=2r0=2a0 / sin �0. Even in this
extreme case, the above expression for U provides a mean-
ingful estimate for the interaction energy. Yet in real systems,
the particles are often subject to short-range repulsive forces,
arising from surfactants grafted at the surface or from the
screened electrostatic of their charges, that keep them at a
minimum distance of a few radii, where our result applies.
With the parameter values given above and at distances of a
few particle radii, the interaction potential is of the order of
10−19 J which is still larger than the thermal energy.

Thus the interaction energy may induce aggregation and
ordering of the particles. Since U is minimum for �0=0 and
�
2 , its angular dependence favors alignment parallel to the
principal axes. In the case of several particles, one expects
the formation of colloidal clusters of cubic symmetry, as
shown schematically in Fig. 4.

C. Catenoid

The present work applies to colloidal particle suspended
at an arbitrary surface of zero mean curvature. Here we dis-
cuss several particular features that arise for a catenoid, i.e.,
for the surface of revolution of the catenary about the z axis.
A simple parametrization is given in terms of distance from
the vertical axis,

��z� = R cosh�z/R� , �30�

as shown in Fig. 4. The minimum radius R occurs at mid-
plane z=0. The principal curvatures are of opposite sign,
cu=c=−cv, and depend on the vertical position z as

c =
1

R cosh�z/R�2 , �31�

and so does the trapping energy E1. From �28� it is clear that
the energy E1 takes its minimum value at z=0 where the
curvature is largest. The vertical force F=−dE1 /dz,

F�z� = −
4�

3

�c2a0
4

R
tanh�z/R� ,

pushes the particles towards midplane where the curvature
takes its maximum value c=1/R.

For micron-sized particles, the curvature-induced force is
comparable to gravity. If the maximum value of F�z� exceeds
mg, the height-dependent potential energy E1�z�−E0+mgz of
a buoyant particle of effective mass m presents a metastable
minimum; its position z0 is determined by setting F�z0�
=mg. Thus one expects that colloidal particles on a vertically
placed catenoid accumulate at a height z0�0 below mid-
plane. This is illustrated in Fig. 5 for particles of radius a0
=1 
m at a catenoid of minimum radius R=100 
m. The
total energy is shifted towards negative values by the curva-
ture contribution E1�z�−E0, with respect to the gravitational
potential mgz. The metastable minimum occurs at z0
�−25 
m and is stabilized by a barrier of about 170kBT.

D. Finite mean curvature

We close with a brief discussion of interfaces with finite
mean curvature; as the simplest realization we take the case
where one of the principal curvatures vanishes, cu=c and
cv=0. Then the Laplace equation �15� is replaced with the
inhomogeneous relation �2�+c=0, which just expresses the
fact the cylinder is not a minimal surface. Yet such interfaces
do occur as a metastable state, for example, in liquid jets, or
in the presence of external forces, such as hydrodynamic
coupling of two-phase microfluidic devices or gravity at the
meniscus of a liquid surface. Two aspects of the present work
could be of some relevance for these systems.

Liquid jets are inherently unstable and decay into droplets
due to the tension-driven Rayleigh instability; its onset is

FIG. 4. Catenoid, or surface of revolution of a catenary, with the
parametrization ��z�=R cosh�z /R�. As explained in the text, capil-
lary forces may result in colloidal aggregates of cubic symmetry.
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triggered by tiny surface fluctuations. The presence of a col-
loidal particle leads to a local deformation that could develop
much quicker than the fluctuation-induced perturbation and
thus could significantly accelerate the instabililty.

The viscous flow of two different fluid phases in a micro-
channel may result in a stable cylindrical interface. Then the
Laplace equation is supplemented with a restoring force,
�2�+c+R���=0, that arises from hydrodynamic constraints.
Still, the presence of the colloidal particles would deform the
interface and lead to a local depression ��r� of the interface

profile �̂�r�.
Finally we mention a striking example of a curvature-

induced lateral force, which has been shown to operate in the
meniscus climbing skills of water-treading insects and am-
phiphile beetle larvae �5,6�. In order to pass from the water

surface to land and to overcome the slippery meniscus, the
larvae deform their body in such a way that the contact line
becomes a 3D curve that fits in the upper part of the concave
meniscus. Then the interface deformation energy is smallest
where the curvature is largest, and thus provides a lateral
force pushing the larva uphill towards the shore. The above
expression for a catenoid shows that the tension-induced
force F�c2r0

4 varies more strongly with the size of the float-
ing object than gravity mg�r0

3; in spite of the somewhat
smaller curvature c, the effects on millimeter sized animals
exceed those discussed above for colloidal particles.

VIII. SUMMARY

We have studied how the presence of spherical particles
affects a liquid interface with two different principal curva-
tures ±c. In the absence of external forces, the curvature of
the liquid phase boundary leads to several capillary phenom-
ena.

�i� The contact line of a particle at a curved interface w0
would not satisfy the condition of a constant contact angle.
Mechanical equilibrium thus requires a finite deformation
which, in turn, reduces the interface energy.

�ii� The single-particle energy �28� varies with the square
of the curvature and takes its minimum value where the cur-
vature is largest. Thus there is an effective force pushing the
particles towards strongly curved regions of the interface.

�iii� The superposition of the deformation of two nearby
particles results in an anisotropic curvature-driven interac-
tion U. Its angle-dependence favors the formation of colloi-
dal aggregates of cubic symmetry, whereas the capillary in-
teractions of spherical particles studied so far are isotropic
and result in hexagonal clusters.

�iv� For micron sized particles on a vertical catenoid in-
terface, the competition of the curvature-driven force and
gravity results in a rather deep metastable minimum of the
total energy; one expects colloidal particles floating on the
interface to be captured slightly below the midplane of the
catenoid.
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